Three-Dimensional Free Vibration Analysis of Carbon Nanotube Reinforced Composites Annular Plates
نویسنده
چکیده
The main objective of this research work was to investigate three-dimensional free vibration of thick annular plates which are composed of carbon nanotube (CNT) reinforced composites materials using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures including an exponential shape function, length efficiency parameter, orientation efficiency factor, and waviness parameter was applied for predicting the mechanical properties of CNT reinforced composites. Convergence of the Chebyshev–Ritz method was also checked. Numerical results are given and compared with the available literature and finite element method (FEM) analysis. Results obtained from the other well-known theories (such as: Micro-Mechanical, Halpin, etc.) are compared with the new form of the rule of mixtures results. Furthermore, the effects of CNT type, structures, diameter, shape factor, density, and volume fraction on the vibration behavior of the annular plates are graphically presented.
منابع مشابه
A Semi-analytical Solution for 3-D Dynamic Analysis of Thick Continuously Graded Carbon Nanotube-reinforced Annular Plates Resting on a Two-parameter Elastic Foundation
The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-M...
متن کاملFree Vibration and Buckling Analyses of Functionally Graded Nanocomposite Plates Reinforced by Carbon Nanotube
This paper describes the application of refined plate theory to investigate free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by aggregated carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, satisfying the zer...
متن کاملFree Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation
In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satis...
متن کاملStatic and Free Vibration Analyses of Functionally Graded Nano-composite Plates Reinforced by Wavy Carbon Nanotubes Resting on a Pasternak Elastic Foundation
In this study, static and free vibration analyses of functionally graded (FG) nanocomposite plates, reinforced by wavy single-walled carbon nanotubes (SWCNTs) resting on a Pasternak elastic foundation, were investigated based on a mesh-free method and modified first-order shear deformation theory (FSDT). Three linear types of FG nanocomposite plate distributions and a uniform distribution of wa...
متن کاملVibration Analysis of Timoshenko Beam reinforced with Boron-Nitride Nanotube on Elastic Bed
In this paper, free vibration analysis of a polymer-based nano-composite beam reinforced by boron-nitride nanotubes and subjected on elastic foundation, is studied. Smooth and defect-free nanotubes with uniform and directly- orientated in matrix are intended. Also, nanotubes’ distribution in the thickness direction of beam is regarded as a uniform distribution of the three different targeted on...
متن کامل